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Department of Physics, Universidad Sim6n Bolivar, Apartado 89000, Caracas 1080A, 
Venezuela? and Department of Physics, University of California at San Diego, La Jolla, 
CA 92093. USA 

Received 2 May 1989 

Abstract, Langevin and hybrid methods are studied on a free field theory. In this simple 
model it is easy to detect the nature of some ofthe problems associated with these algorithms. 
Systematic errors following from the discrete time step used in the numerical implementation 
of the algorithms are computed. 

1. Introduction 

At present, some of the most challenging problems in computer simulation techniques 
are those involving dynamical fermions. Systems with fermionic degrees of freedom 
are characterised by non-local actions, extremely hard to simulate with standard 
methods. Very recently several groups have devoted themselves to developing a global 
updating procedure where the action does not need to be recomputed as often as in 
the Metropolis algorithm [ 13. Into this category fall the so-called dynamical techniques: 
microcanonical [2], Langevin [3,4] and their combination, the hybrid algorithm [ 5 ] .  

The basic idea behind these dynamical methods is to introduce an extra degree of 
freedom, a fake time, and describe the evolution of the system by a set of differential 
equations, in such a way that for large times, the system will reach equilibrium. 
Configurational averages are replaced by time averages in the dynamical trajectories. 
The most attractive feature of these techniques is that the computer time required to 
perform a complete sweep (with a small step size) through the lattice grows linearly 
with the volume, compared with the computer time required to update a single link 
of the lattice with a Metropolis algorithm, that grows with the cube of the volume. 

However, algorithms based on the solution of differential equations involve system- 
atic errors due to the finite step size introduced to find their numerical solution. If, 
in order to get correct physical results, it is necessary to choose time steps that are too 
small, the evolution of the system will slow down considerably and, in the long run, 
these methods can be more expensive than the exact updating. 

Several of these algorithms have already been employed to study QCD in the presence 
of dynamical quarks. The results are very encouraging, but they reinforce the need 
for a better understanding of the behaviour of the techniques, which can be clarified 
by the study of simple models. This is why we choose to perform our study with an 
extremely simple model, the free field theory. 
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A system of non-interacting fields is described by an  action of the form 
X 

S = d x  4*(x ) (d2+  m 2 ) 4 ( x ) .  
--x 

Performing a Fourier transformation of the fields 

the action can be written in terms of the Fourier transformed fields as 
.r 

S =  [ dk$*(k)(k’+m’)$(k) (3) 
J --I 

i.e., a collection of harmonic oscillators. Next, we are going to illustrate how the 
Langevin and  the hybrid techniques can be applied to the simulation of this system. 
We hope that, in this simple model, it is going to be easier to detect and  understand 
the nature of some of the problems of these techniques. This model is simple enough 
that it can be solved analytically, giving some insight into the performance of the 
algorithms and  the dependence of the error on the step size. 

2. Langevin technique [3,41 

Given a statistical system 
r 

adding an  extra coordinate, a fake time, we can give dynamics to the system by writing 
a Langevin equation for each of the fields: 

where the last term is a Gaussian random field that satisfies 

~ ( n t ,  7 1 ) ~ ( n , ,  7 2 ) = 2 S n , n 2 S ( 7 , - 7 2 )  t)(fl ,  T ) = o .  ( 6 )  

It  can be proved that 

i.e. ensemble averages can be calculated as averages over time trajectories. 
Applying the Langevin equation to the system described by (3) we get 

d 
-$(k, ~ ) = - ( k ’ + m ’ ) $ ( k ,  ~ ) + T j ( k ,  7) 
dT 

this equation can be solved exactly, given [ 6 ] :  

$ ( k ,  7) = IT d s  exp [ - ( T -  s)( k’+ m’)]Tj( k, s) 
--x 

( 9 )  
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and the autocorrelation function can be calculated as a time average (indicated by an  
overbar) 

C(k, T )  = &*(k,  O)4(k ,  7 )  

= 1” ds ,  1’ d s 2 e x p  [ ~ ~ ( k ~ + m ~ ) ] [ - ( i - ~ - s ~ ) ( k ~ + m ’ ) ] < * ( k ,  si)7j(k, s2 )  
--* --I 

- exp[-T(k?+ m’)] 
- 

k 2 +  m2 

In terms of the spatial fields, the autocorrelation function can be written as 

1 
c$*(x,O)c$(x, T ) = -  jx dk,  Ix d k z e x p [ - i ( k ? - k , ) 7 ] ~ * ( k i , 0 ) ~ ( k , ,  T )  

2 x  --x - x  

- 1 
2 m  

= - [ 1 - @,(mv’.)] 

where @(m&) is the well known error function, defined as 

d s  exp( - s 2 ) .  (12) 

In figure 1 we show the results for the normalised autocorrelation function 

obtained by solving numerically the integral that appears in (12) for different values 
of the mass. 

0 0 2  0 4  0 6  0 8  1 0  
Time 

Figure I .  Autocorre~dt lon function a s  d function of time at  different masses, calculated 
with the Langevin algorithm 
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Notice the dramatic increase in the autocorrelation function at small values of the 
mass (as predicted by (10)). This behaviour is due  to the contribution of the long- 
wavelength (low-frequency) modes for which 

(14)  

becomes large as the mass decreases. 
Now, in order to evaluate the errors introduced when the Langevin equation is 

solved numerically (as happens in most cases) we are going to repeat the above 
procedure for the discrete version of (8) 

$ ( k , n + 1 ) = ~ ( k , n ) - h ( k ' + m Z ) $ ( k , n ) + 7 j ( k , n )  (15)  

where A is the time step size. The solution of this equation can be easily calculated, given 
n-1  

$ ( k ,  n ) =  1 [ 1 - A ( k 2 + m " ) ] " - ' - ' & t j ( k , s )  (16)  
r = - x  

from which we can calculate the autocorrelation function 

From (17)  we can define the normalised correlation at time, T =  n as 

C ( T )  = 4 * ( k ,  O ) 4 ( k ,  7 ) / 4 * ( k ,  O ) 4 ( k ,  0 )  =e- '  (18) 

where the correlation time, y, is defined as 

1 
Y = A( k' + "). 

Thus, in order to keep the stability of the algorithm, we must choose 

where k,,, is the maximum momentum allowed in the lattice. 

time must be 
Taking into account the restriction for the step size, the lower limit for the correlation 

k i d x  + m 2  
k'+ m' Ymlll = 

i.e. the high-momentum components will evolve much faster (shorter correlation time) 
than the low-momentum components. 

For the low-momentum component, long-wavelength modes, the correlation time 
goes as 

i' y ( k + 0) - - - 1 
m 2  

with j being the longest correlation length of the theory (in lattice units). As we 
approach the continuum limit 6 -  OC, the situation becomes worse. 
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3. The hybrid algorithm (51 

The hybrid method has its origin in the observation that the microcanonical and  the 
Langevin algorithms have complementary advantages, so there is a chance that a 
method that combines both of them will offer a better performance. 

The hybrid method works in the following way. An extra degree of freedom, a 
fake time, and  a new set of coordinates p ,  conjugate to the 4, are introduced to the 
system. The evolution of the system is described by an  algorithm such that 

where the p ( n )  are selected according to 

( d ; ( n  + 1) - d;( n ) ) / 2 A  probability qA 
otherwise. 

i( n )  is a Gaussian random function satisfying (i’) = 1 and A is the time step size. 
The system evolves most of the time with the classical equations of motion (the 

microcanonical algorithm), and  occasionally the momenta are refreshed; this means 
that all the momenta are substituted by new ones taken from a Gaussian random 
distribution, normalised in such a way that the average kinetic energy is correct. In 
this way, the system evolves most of the time with the fast algorithm, while the occasional 
refreshing of the momenta introduces the randomness that will assure ergodicity. This 
algorithm can be optimised by tuning the refreshing frequency [the parameter q )  in 
order to minimise the autocorrelation. It is easy to see that the Boltzmann distribution 
is an  invariant distribution of the system. In  the limit q = 0 [never refreshing), the 
microcanonical algorithm is recovered. In contrast, if q A  = 1 (refreshing after each 
step), the algorithm is equivalent to the Langevin algorithm with the identification 
A[Langevin) = A2(hybrid)/2. 

Following the approach of Duane [ 7 ] ,  we are going to calculate the correlation 
function 4 (0 )4 (~ ) ,  where the average is now over the initial momenta, the number of 
times of refreshings, and  over the intermediate momenta obtained after the refreshing. 
For simplicity we are going to perform the calculation in the continuum limit of (23). 

Without the refreshing step, the evolution would be determined by the classical 
equation of motion 

with solution 

&(k ,  r ) = & ( O ) s i n [ a + ( k 2 + m 2 ) ~ )  (26) 
and  correlation function 

=f&(’,(k, 0) cos(k’+ m ’ ) ~ .  (27) 
The subscript 0 means that we are working with the microcanonical ensemble, no 

refreshing here. 
The autocorrelation function C[ k,  7) for the hybrid algorithm can be calculated as 

a series expansion in the number of refreshings occurring in the interval (0, 7). Each 
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scattering at time T' introduces a factor of q dT, with q being the refreshing frequency. 
The series can be summed, giving an expression 

Then the C(k, T )  satisfy an equation for a damped harmonic motion 

%(k, T)+qC(k, 7)+(k2+m2)C(k ,  7 ) = 0  (29) 

with solution of the form 
e- T /  v 

C(k, 7)-- 
k2+ m 2  

where the correlation time is 

q < 2 J k 2 + m m Z  
1 

q > 2Jk2  + m2. 
'=\(q/2) - J (q2 /4 )  - (k2+ m') 

The optimal refreshing frequency for the k mode, that which minimised the 

In terms of the spatial fields we can write the autocorrelation function as 
correlation function, is q = 2J( k2 + m 2 ) .  

Figure 2 shows the normalised correlation function, defined by (13) obtained 
numerically from (33) for different values of the mass. We found the same effect as 
with the Langevin algorithm that the smaller the mass, the longer it takes the autocorrela- 
tion to decay. 

An interesting characteristic of the figures is that the optimal refreshing frequency 
is always q = 2m, that is exactly the optimal value for the k = 0 mode, the slowest mode 
of the system. The autocorrelation is dominated by the low-frequency, long-wavelength 
modes. 

It is evident that, for both algorithms, there is a strong relationship between the 
autocorrelation function and the mass. The autocorrelation time increases considerably 
when the mass decreases, the evolution of the system is dominated by the long- 
wavelength, low-frequency modes. This is a serious problem shared by almost all the 
Monte Carlo simulation methods and, in this study, we show that the Langevin and 
hybrid methods are not exempt from it. 

The Langevin and the hybrid methods have serious problems for the simulation of 
systems with small masses. For these systems the step size must be reduced in such a 
way that the simulation becomes very slow, taking the long-wavelength modes too 
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0 0 2  0 4  0 6  0 8  1 0  1 2  
9 

0 2 4 6 8 1 0  
4 

0 1 2 3 4  
q 

Figure 2. Autocorrelation function plotted against 
refreshing frequency, q, calculated with the hybrid 
algorithm, for different values of the time and  ( a )  
mass=0.1,  ( b )  m a s s = l  and  ( c )  m a s s = 2 .  

long to equilibrate. This seems to be a very serious handicap to the use of these 
algorithms for the simulation of systems near phase transitions, where all wavelengths 
are involved. This problem has already been observed in the simulation of QCD with 
dynamical fermions, where these algorithms have difficulty simulating systems with 
small quark masses [8]. 

There is hope that this problem can be avoided with the recently introduced fast 
Fourier acceleration techniques [4], which suggest the introduction of a non-local time 
step size, such that 

A(x) = 1 eikxA( k )  
k 

where 
1 

A(k)- -  
k 2 +  m2  

will give a minimum correlation time for all modes. However, it is not clear how these 
techniques can be applied to gauge theories and  its implementation is under study. 
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